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Abstract

Background: It is well established that some patients who are diagnosed as

being in a vegetative state or a minimally conscious state show reliable signs of

volition that may only be detected by measuring neural responses. A pertinent

question is whether these patients are capable of higher cognitive processes.

Methods: Here, we develop a series of EEG paradigms that probe several core

aspects of cognition at the bedside without the need for motor responses and

explore the sensitivity of this approach in a group of healthy controls. Results:

Using analysis of ERPs alone, this method can determine with high reliability

whether individual participants are able to attend a stimulus stream, maintain

items in working memory, or solve complex grammatical reasoning problems.

Conclusion: We suggest that this approach could form the basis of a brain-

based battery for assessing higher cognition in patients with severe motor

impairments or disorders of consciousness.

Introduction

Improvements in intensive care have resulted in a surge

of survivors of severe brain injury (Owen 2008). Though

many survivors show significant recovery, for others,

recovery is incomplete, resulting in prolonged disruption

of consciousness. Neurological disorders that involve a

persistent impairment of the patient’s awareness of their

self and environment are collectively referred to as disor-

ders of consciousness (DOC) and include coma, vegeta-

tive state (VS), and minimally conscious state (MCS)

(Owen 2008). These three conditions can be conceptual-

ized as varying within the dimensions of wakefulness and

awareness. Coma involves the cessation of both wakeful-

ness and awareness, whereas MCS and VS patients main-

tain wakefulness with typical circadian rhythms of

increased activity (Cruse et al. 2013). VS patients are con-

ceived as lacking awareness, whereas MCS patients display

some signs of awareness in the form of occasional pur-

poseful behaviors. DOC misdiagnosis rates as high as

43% have been reported, typically misdiagnosing MCS as

VS, with important implications for patient prognosis

and medical management (Andrews et al. 1996; Kuehl-

meyer et al. 2012).

In an effort to standardize DOC diagnosis, the JFK

Coma Recovery Scale-Revised has emerged as a diagnostic

tool with good inter-rater reliability and prognostic util-

ity. The scale evaluates 23 operationally defined behaviors

that assess auditory, visual, motor, oromotor, communi-

cation, and arousal functions (Kalmar and Giacino 2005).

Despite the success of the scale, the accuracy of diagnosis

in DOC remains contentious. Furthermore, it has been

argued that an additional subset of patients may be mis-

diagnosed due to impairments in motor function, calling

into question the exclusive reliance upon behavioral

examination in DOC assessment (Andrews et al. 1996).

In response to these diagnostic challenges, research has

been conducted into examining neural activity to diag-

nose DOC and understand the underlying pathophysiol-

ogy. Studies of resting state activity have shown that

increased functional connectivity correlates with behav-

ioral diagnosis of patients and predicts recovery of aware-
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ness (Vanhaudenhuyse et al. 2010). Likewise, spectral pat-

terns in EEG activity have been shown to predict patient

outcome (Demertzi et al. 2008), and studies utilizing

novel TMS-EEG perturbation techniques indicate that

increases in long-range information transfer track the re-

emergence of awareness (Rosanova et al. 2012).

Another line of research has studied neural response to

sensory stimulation in DOC patients. The presence of a

mismatch-negativity EEG component, indicating neural

detection of deviant stimuli, has been demonstrated in

DOC patients and shown to coincide with the return of

functional communication (Kane et al. 1993; Fischer et al.

1999, 2010; Kotchoubey et al. 2003; Wijnen et al. 2007;

Qin et al. 2008). The P300 EEG component, elicited to

infrequent stimuli as well as stimuli relevant to a particu-

lar participant or task, has likewise been demonstrated in

DOC populations and often tracks patient recovery (Kot-

choubey et al. 2001; Cavinato et al. 2009; Faugeras et al.

2012). Furthermore, P300 amplitudes during active stim-

ulus counting bear a significant relationship with behav-

ioral recovery scores (Risetti et al. 2013). A hierarchical

language paradigm contrasted fMRI responses to low-level

auditory stimuli, intelligible speech, and semantically

ambiguous sentences (Coleman et al. 2007). Localized

neural responses were found in several patients in areas

with demonstrated involvement in processing correspond-

ing stimuli classes. Importantly, the level of processing

demonstrated tended to correspond with subsequent

recovery. These and other studies have demonstrated the

potential of utilizing neural measures in characterizing

residual function and recovery trajectories in DOC

patients.

In contrast to the paradigms outlined above that pas-

sively present stimuli to patients, several studies have used

paradigms that require the patient to actively carry out a

cognitive process in response to experimenter instruc-

tions. Neural activity indicative of that process is then

measured, and if established, suggests volitional behavior

in the absence of an overt motor response. Owen et al.

(2006) were the first to apply an active fMRI paradigm

that required a patient diagnosed as VS to engage in

motor or spatial imagery. Appropriate loci were shown to

be more active during the appropriate imagery condition,

challenging her clinical diagnosis and indicating that she

could understand verbal instructions and respond appro-

priately. In a large-scale follow up fMRI study with 54

patients, five patients demonstrated volitional neural

activity, suggesting that a significant minority of patients

may be inappropriately diagnosed owing to deficits in

motor output (Monti et al. 2010). Similarly, an active

EEG-based paradigm demonstrated that three of 16

patients diagnosed as VS exhibited different EEG patterns

in response to verbal instruction (Cruse et al. 2011).

A recent fMRI study attempted to assess executive

function using a similar reasoning task (Hampshire et al.

2012). At the beginning of each trial, a patient was given

a verbal reasoning problem to solve with two possible

answers. The patient indicated their response by imagin-

ing either a face or a house depending on their answer.

In trials where house was the correct answer, there was

significantly greater activation in areas specific to spatial

processing, indicating that the patient had imagined a

house when it corresponded to the correct answer and

was able to solve a significant number of reasoning prob-

lems correctly. This study provided the first evidence to

our knowledge of successful reasoning in a patient diag-

nosed as MCS.

The current study sought to build on this previous

work by developing and testing in controls a battery of

tasks that can be used to assess higher cognitive functions

without requiring an overt motor response. Due to the

motor limitations of DOC patients and practical chal-

lenges of scanning patients with fMRI, the paradigm was

designed to assess higher cognition using the P300b EEG

response (Guger et al. 2003) that could be applied at the

bedside. Three tasks were chosen for the battery: a basic

command following paradigm (K€ubler et al. 2001), a

modified Sternberg memory span task (Sternberg 1966),

and a verbal reasoning task (M€unte et al. 1998; Hamp-

shire et al. 2013). These tasks were chosen based on

recent studies that highlight memory and reasoning as

fundamental but dissociable components of higher cogni-

tion (Hampshire et al. 2012).

The main hypothesis of the experiment was that the

battery would be able to detect command following in

the first task as well as correct performance in the execu-

tive function tasks at the group and single-participant

level using the P300b, which is elicited to rare, salient and

attended task relevant stimuli. It was also hypothesized

that the battery would be capable of determining individ-

ual differences in performance using the P300b. Lastly,

exploratory analyses were conducted examining the sensi-

tivity of the paradigm to detect correct performance as a

function of testing time and participant accuracy.

Methods

Participants

This study was approved by The University of Western

Ontario Ethics Review Board. 16 healthy adults (eight

females, age: 21.1 � 2.2 years) were recruited from the

University of Western Ontario in London, Canada. All

participants were right handed with no history of neuro-

logical impairment. They had good hearing and normal

or corrected to normal eyesight. Two participants were
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excluded from analyses due to excessive movement arti-

facts.

Stimuli

Recordings of eight monosyllabic English nouns were

used as P300 stimuli. Words were chosen to have differ-

ing onset consonants and were matched for frequency,

number of syllables, and imagability using the MRC Psy-

cholinguistics Database (Wilson 1988).

Task1

We first implemented a basic command following para-

digm using the P300b ERP. During Task 1, subsequently

referred to as auditory attention (AT), participants were

given a target word at the beginning of each trial. A

sequence of word stimuli was subsequently played

(referred to here as the “stream”), including the target

word as well as all seven nontarget words. The partici-

pant’s task was to internally count the number of occur-

rences of the target word while ignoring nontarget words

(Fig. 1). Counting was used because in the past it has

been shown to elicit a strong P300 component, which can

later be used to infer the attended word in the stream.

Subjects were instructed to maintain fixation on a cross,

centered on the screen during the presentation of the

stream.

The stream consisted of an equal number of occur-

rences of all eight word stimuli, played 7–10 times each,

so that the total stream length was either 56, 64, 72, or 80

words. Each stimulus was 400 msec in length, with a

100 msec between stimuli. At the end of each stream,

participants indicated how many times the target word

occurred. Four buttons appeared on the screen, with the

choices 7, 8, 9, and 10. The participant clicked the button

corresponding to their response. The purpose of the

behavioral response was to test whether the participant

was performing the counting task, to gauge normal per-

formance ranges, and to provide behavioral data for cross

validation of the EEG analyses. A 10 sec rest delay was

given before the start of the next trial. Each block of the

auditory attention task consisted of 12 trials. There were

two blocks in the experiment, resulting in 24 trials total.

Each word stimulus was a target three times.

Task2

We then used the P300b to assess working memory

(Fig. 1). During task 2, here referred to as working memory

Figure 1. Organization of experiment and tasks.
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(WM), participants were given a memory set at the begin-

ning of each trial, consisting of 4, 6, or 8 word stimuli. Sub-

sequently, there was a delay period of 10 sec. Following the

delay, the auditory phrase “what was the xth word” was

played, where x could be any ordinal position from one to

the length of the memory set (e.g., 1st, 2nd, 3rd, etc.). Par-

ticipants indicated their answer by clicking the appropriate

button with a mouse. As per task 1 (AT), the purpose of

the behavioral response was to gauge normal performance

ranges and provide a benchmark to test the validity of ana-

lyzing participants’ performance using the P300b ERP.

After indicating their answer, a stream of word stimuli

was played, arranged as described in task 1, with 7–10
repetitions of each word stimulus. Participants counted

the word stimulus corresponding to their answer and

indicated its number of occurrences after the completion

of the stream. Each WM block contained 12 trials with

two blocks in the experiment for a total of 24 WM trials.

Each memory set size was used in eight trials.

Task3

The purpose of task 3, referred to as auditory reasoning

(AR), was to assess reasoning using the P300b. Participants

were given an auditory reasoning problem at the beginning

of each trial (e.g., “The cake follows the pen”). The task of

the participant was to determine the word in 1st position as

described by the sentence (Table 1 & Fig. 1). This verbal

reasoning task was based on Alan Baddeley’s 3 min gram-

matical test of IQ (Baddeley, 1968) and has been used in

the past to measure reasoning abilities, as it requires the

participant to maintain the sentence in mind and mani-

pulate it according to logical rules in order to arrive at a

solution (Hampshire et al. 2012). Twenty-four unique sen-

tences were generated, one for each AR trial. Sentences were

manipulated according to the verb used (precede vs.

follow), negation (positive vs. negative) and whether the

sentence was active or passive (“follows” vs. “is followed

by”). In total, eight sentence types were generated and each

was played three times over the course of the experiment.

Participants indicated their answer by clicking the corre-

sponding button using the computer mouse. The purpose

of the behavioral response was again to provide a bench-

mark to test the validity of analyzing participants’ perfor-

mance using the P300b. Participants were given an

unlimited amount of time to solve each problem. A 2 sec

delay followed the response, followed by the auditory

phrase “count that word.” A stream of word stimuli was

played arranged exactly as described in task 1, with 7–10
occurrences of each word stimulus. Participants counted

the word stimulus corresponding to their answer and indi-

cated its number of occurrences after the completion of the

stream with the computer mouse. Each AR block contained

12 trials, and two blocks were run in the experiment, result-

ing in a total of 24 AR trials.

Assessment protocol

The experiment consisted of six blocks total with two

blocks of each task (Fig. 1). Each block contained 12 trials,

for a total of 72 trials. The arrangement of the experiment

was task 1, task 2, task 3, task 1, task 2, task 3, for all partic-

ipants. The arrangement was not counterbalanced across

participants as it is common practice to run neuropsycho-

logical tests in a fixed sequence to reduce factors that can

confound interindividual variability measures (Tombaugh

and McIntyre 1992; Fray et al. 1996). Participants were

given as much time as needed to rest between blocks. The

total experiment time was typically 1 h and 15 min, plus

the time required for setup of the EEG recording system.

Behavioral analysis

To test for systematic fluctuations of attention over the

course of the task, the accuracy of counting target stimuli

(as given by the experimenter in task 1, as indicated by

participant in task 2 and 3) was compared across blocks.

To test for systematic fluctuations of attention between

tasks, the accuracy of counting target stimuli (as given by

the experimenter in task 1, as indicated by participant in

Table 1. Sentence types used in AR task.

Example Precede/Follow Active/Passive Negative/Positive Correct Answer

Cake precedes dot Precede Active Positive Cake

Cake does not precede dot Precede Active Negative Dot

Cake is preceded by dot Precede Passive Positive Dot

Cake is not preceded by dot Precede Passive Negative Cake

Cake follows dot Follow Active Positive Dot

Cake does not follow dot Follow Active Negative Cake

Cake is followed by dot Follow Passive Positive Cake

Cake it not followed by dot Follow Passive Negative Dot

AR, Auditory reasoning
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task 2 and 3) was compared across task types. The effect

of set size on recall accuracy was examined in the WM

task. All comparisons were performed using repeated-

measures ANOVA.

To assess the effect of sentence type on performance in

the AR task, a three-way repeated-measures ANOVA was

conducted. Verb type (precedes vs. follows), negation

(negative vs. positive sentences) and form (active vs. pas-

sive) were used as factors, each with two levels.

EEG recording

EEG recording was performed using a G.Tec amplifier and

G.Tec gel-based active electrode system (G.Tec Medical

Engineering, GMBH). Electrodes were placed using the 10-

10 convention and recorded from locations FC3, C3, CP3,

FCZ, CZ, CPZ, FC4, C4, CP4, T7, T8, PZ, POZ, OZ, P7, P8.

Data were analog filtered with a passband of 0.1–100 Hz and

a notch filter at 60 Hz to reduce interference. Sampling was

performed at 256 Hz, with impedances kept below 5k Ω.
Scalp voltages were referenced to the right earlobe.

EEG preprocessing

All EEG processing was performed using Matlab with

EEGLAB and FieldTrip toolboxes (Delorme and Makeig

2004; Oostenveld et al. 2010). EEG was digitally filtered

from 0.5 to 10 Hz with these parameters selected based

on previous p300 BCI research (Guo et al. 2010). Eye and

muscle artifacts were rejected using independent compo-

nent analysis (ICA) (Delorme and Makeig 2004). Compo-

nents that were likely the result of movement, blink, and

saccade artifacts were rejected using a previously validated

method utilizing kurtosis, extreme value thresholding,

data improbability, and linear trending (Delorme, et al.,

2010). Remaining independent components were back-

projected to electrodes.

ERPs were generated by dividing trials into epochs

from �200 to 1000 msec relative to word stimuli onsets.

ERPs were baseline corrected by subtracting the average

prestimulus magnitude from the epoch.

Cluster mass permutation test

For the following ERP analyses, a cluster mass permuta-

tion test (CMPT) was used to test for systematic differ-

ences between conditions using a large amount of

information from the EEG data while avoiding the multi-

ple comparisons problem. This approach was first devel-

oped for fMRI (Bullmore et al. 1999) and has since been

adapted for analysis of MEG and EEG data (Maris and

Oostenveld 2007). For the particulars of the statistical

analysis, see Appendix.

Group-level analysis

For analysis of the AT task, ERPs were averaged within

participants for all attended word stimuli and separately

averaged for all unattended word stimuli, generating 28

ERPs total including two for each participant. CMPT

group-level analysis was conducted in order to test for

significant differences between conditions.

For analysis of the WM task, ERPs were averaged, as

described above, for all correct word stimuli and separately

averaged for all incorrect word stimuli within each partici-

pant. For example, in a particular WM trial, if “dot” was

the correct answer, the ERP responses to “dot” would be

added to the correct condition regardless of whether it was

also the stimuli that the participant attended to, whereas

ERP responses to all other word stimuli were added to the

incorrect condition. The logic of this approach is that,

should a participant solve problems significantly above

chance, they will attend to the correct word stimulus and

P300b ERPs will accumulate in the correct condition,

whereas non-P300b ERPs (of mean magnitude zero) will

accumulate in the incorrect condition, leading to a signifi-

cant difference between the two conditions. However,

should a participant solve problems at chance, P300b ERPs

will be assigned with equal probability to both correct and

incorrect bins, leading to a null result.

In the AR task, ERPs to correct word stimuli were

compared to ERPs to the word stimuli that formed the

other possible answer within the sentence. For example, if

the sentence used was “cake precedes dot,” ERPs to the

“cake” word stimuli were added to the correct stimuli

condition, whereas ERP responses to “dot” were added to

the incorrect condition. This approach was used because

a participant could potentially listen for both words in

each trial. If all stimuli other than the correct word stim-

uli were added to the incorrect bin, even though one of

the incorrect stimuli ERPs contained a P300b it would be

diluted by the other incorrect stimuli and be significantly

lower in magnitude, giving rise to a positive result when

the participant did not solve the problem correctly. Add-

ing only the ERP to the incorrect stimuli in the sentence

to the incorrect condition avoids this issue.

Single-participant level EEG analysis

For analysis of the AT task at the single-participant level,

ERPs to individual attended word stimuli were compared

to ERPs to the unattended word stimuli. For analysis of

the WM task, ERPs to correct word stimuli were com-

pared to ERPs to incorrect word stimuli. For analysis of

the AR task, ERPs to correct word stimuli were compared

to ERPs to only the incorrect word stimuli used in that

same sentence.
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Prediction of individual differences from
P300b responses

The purpose of the individual differences analysis was to

explore whether the magnitude of P300b responses pre-

dicted performance as indicated by behavioral measures.

As discussed below, participants performed largely at a

ceiling level with no significant differences between condi-

tions in the AR task. Consequently, differences between

participants were predicted from ERPs only in the WM

task.

The theory motivating this analysis is that, should a

participant perform at 100%, their ERP magnitude to

correct word stimuli would be equal to their ERP magni-

tude to attended stimuli, as all correct stimuli would also

be attended stimuli. Conversely, if the participant per-

formed at 50%, only half of the correct word stimuli

would also be attended. Given that half of the ERPs in

the correct condition will be P300b ERPs, whereas half

will be non-P300b ERPs of average magnitude zero, the

correct ERP will be half as large as the attended ERP

magnitude. If a performance coefficient is calculated

between zero and one, the resulting correct ERP magni-

tude should be the attended ERP magnitude multiplied

by this coefficient. For example, if the attended P300b

magnitude is 4ɥv for a participant who performs at 75%,

the correct P300b magnitude should be 3ɥv.
In order to test this predictive model, ERP magnitudes

were first calculated within each participant at each WM

difficulty level (four, six, or eight item memory sets),

resulting in three ERPs for each participant. Time 9 elec-

trode values that were in the spatiotemporal regions

selected by the CMPT were averaged to calculate a mean

magnitude within each of the three conditions for each

participant. This magnitude was then divided by the

average ERP magnitude to attended stimuli from the AT

task to calculate normalized ERP magnitude (NM). A

NM was calculated for each condition in each partici-

pant, resulting in 42 NM total. Each NM magnitude had

a paired performance score calculated from behavioral

data.

The unique and combined relationship between set

size, NM and performance was analyzed using a general-

ized linear model with memory set size as a factor and

NM as a covariate. The purpose of this test was to first

examine whether NM could be used to predict individual

differences in performance overall. The analysis also mod-

eled the prediction of performance from NM within diffi-

culty levels (by factoring out the effects of difficulty level

on performance). Second, this test was able to analyze

whether interactions existed between set size and NM

such that NM was more predictive of performance

depending on the level of difficulty. Following this analy-

sis, a correlation test was performed between NM and

performance within each difficulty level to examine the

nature of the linear relationship at each level.

Due to the larger differences in variance of participant

performance in the hardest memory sets with eight items

(discussed below), an additional single-participant level

analysis CMPT was conducted with only four and six

item memory set trials included.

Relationship between P300b significance,
time, and performance

As discussed above, the normalized magnitude of the

P300b response to correct stimuli should vary linearly

with performance. Therefore, the P-value for differences

between ERP responses to correct versus incorrect word

stimuli should also vary with performance such that bet-

ter performance decreases the P-value and increases statis-

tical confidence that the participant is able to perform the

task. Similarly, as task time increases, the number of stim-

uli in each condition likewise increases, also decreasing

the P-value and adding to statistical confidence. Further-

more, these two variables are related. Better performance

decreases the amount of time required to attain a signifi-

cant P-value, whereas worse performance increases the

time required to achieve the same P-value. The nature of

this relationship is crucial to the purposes of this para-

digm, as these parameters determine the sensitivity of the

test to detect accurate performance, or lack thereof, as

well as the length of time required for the battery to reach

a significant level of confidence.

The relationship between task time, performance and

P-value in the overall task was modeled using a Monte

Carlo simulation. The following Monte Carlo procedure

was used:

1 Within each participant, ERP responses to stimuli that

were actually attended were collected by selecting ERP

responses to word stimuli that corresponded to the

participants’ behavioral response in each trial.

2 A random selection of n (where n increases with time

on task) attended ERPs were selected from the attended

ERP set, whereas 7*n ERP responses were randomly

selected from the unattended ERP set.

3 A single-participant level CMPT was performed

between these two sets to attain a P-value.

4 For each value of n, steps two and three were repeated

100 times to decrease the effect of particular selections

on the resultant P-value.

5 These 100 P-values were averaged to attain mean

P-value at that n for the given participant.

6 The value of n was increased in multiples of 25 to

simulate increasing time, with steps 2–5 repeated at

each value of n.
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The effect of performance was simulated by inserting

an intervening step between steps 2 and 3. Attended and

unattended ERPs were swapped between conditions

depending on simulated performance. For example, if the

simulated performance was 0.6, 40% of the attended

ERPs were randomly swapped for an equal number of

unattended ERPs between conditions. Performance levels

of 0.3 to 1 were used in increments of 0.1.

Results

Behavioral results

The accuracy of counting in the AT task was 70% across

all levels, with no significant differences between blocks

(F(5, 65) = 1.985, P = 0.092) or level.

On the WM task, participants averaged 80% across all

three set sizes, with 97% correct for four item sets, 80%

correct for six item sets and 64% for eight item sets. All

participants scored above chance at all difficulty levels.

There was a significant effect of memory set size on accu-

racy of recall, F(2, 26) = 22.701, P < 0.001. Individual

comparisons of accuracy between memory set sizes also

revealed significant differences, with four item sets

recalled significantly better than six items (P < 0.001) and

eight items (P < 0.001), and six items sets remembered

significantly better than eight items (P = 0.005).

On the AR task, participants averaged 95% correct

across all sentence types. All but one participant scored

above chance at all levels. There was no significant main

effect of the verb used (precedes vs. follows), F(1,

13) = �0.11, P > 0.05, negation, F(1, 13) = 0.51,

P > 0.05, or passive vs. active sentences, F(1, 13) = 0.21,

P > 0.05. There were no significant 2 or 3-way interac-

tions). The absence of significant differences in this task

indicates ceiling performance.

EEG results—group level analysis

At the group level, the CMPT revealed that ERPs were

significantly larger to attended word stimuli than unat-

tended word stimuli in the AT task (P < 0.001). CMPT

also revealed significantly larger ERPs to correct word

stimuli compared to incorrect word stimuli in both the

WM task (P = 0.002) and the AR task (P = 0.003).

Group-averaged topomaps showed that for all tasks the

P300b response was most prominent in posterior elec-

trodes (Fig. 2).

Single-participant level

CMPT at the single-participant level for the AT task

revealed a significant difference between ERPs to attended

stimuli versus unattended word stimuli for all partici-

pants, a significant difference between ERPs to correct

versus incorrect word stimuli in 11/14 participants in the

WM task, and a significant difference between ERPs to

correct versus incorrect word stimuli in 13/14 participants

in the AR task (Fig. 3).

Due to increased variance of participant performance

in the eight item memory sets, the attended word stimuli

often did not correspond to the correct word stimuli. The

CMPT analysis was not significant for three participants,

which may have been caused by the inclusion of incorrect

trials from the eight item set. In order to explore this

possibility, a second CMPT analysis was conducted with

the inclusion of word stimuli from only four and six item

memory sets. The restricted CMPT revealed a significant

difference between ERPs to correct and incorrect word

stimuli in all 14 participants.

Prediction of individual differences from
P300b components

Results from the generalized linear model demonstrated

that memory set size significantly predicted performance,

v2(2, n = 42) = 15.123, P < 0.001, with performance

decreasing as memory set size increased. Importantly,

normalized ERP magnitude (NM) predicted performance

even when the general effect of set size was factored

out, demonstrating that NM predicted participant

differences within individual memory set sizes; v2(1,
n = 42) = 6.742, P = 0.009 (Fig. 4). The generalized lin-

ear model also revealed a significant interaction between

memory set size and normalized ERP magnitude, v2(2,
n = 42) = 6.149, P = 0.049, suggesting that the predictive

power of ERP magnitude was modulated according to

memory set size.

In order to explain the linear relationship between NM

and performance within each memory set size, three cor-

relation tests were performed, one at each memory set

size. NM was not significantly correlated with accuracy

within four item sets (Fig. 4), r(12) = �0.44, P > 0.05 or

six item sets, r(12) = 0.321, P > 0.05. NM and accuracy

were significantly correlated within the eight item set size,

r(12) = 0.712, P = 0.002.

Significance as a function of number of
targets

An exploratory analysis was conducted to investigate the

combined effects of task duration and subject accuracy on

the statistical sensitivity of the test (Fig. 5). At 100% sim-

ulated accuracy, mean P-value was less than 0.05 after 75

attended stimuli, with large variation between partici-

pants. As the number of stimuli increased, P-value
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decreased asymptotically to zero while variance likewise

decreased. Given that each attended stimuli plus intersti-

mulus interval is 500 msec and it always accompanies

seven unattended stimuli of the same duration, the aver-

age amount of time per attended stimuli is approximately

4 sec. Seventy-five attended stimuli therefore take approx-

imately 5 min to deliver, not counting the time taken to

pose questions within trials. As accuracy decreased, a lar-

ger number of stimuli were required to reach the same

level of significance. At 90% accuracy, 100 attended stim-

Figure 2. Group average scalp maps in all

three tasks at 450 msec post stimulus

onset. Attended (AT) and correct (WM and

AR) topomaps on left side, unattended

(AT) and incorrect (WM and AR) ERPs on

right. ERP time courses for attended and

correct (red line) versus unattended and

incorrect (black line) over electrode CPz.

Figure 3. Top left: Mean voltage

magnitude within largest CMPT cluster for

each participant in AT task. Bottom left:

Mean voltage magnitude within largest

CMPT cluster for each participant in WM

task. Top right: Mean voltage magnitude

within largest CMPT cluster for each

participant in AR task. Bottom Right: Mean

voltage magnitude within largest CMPT

cluster for each participant in WM task

with eight item sets excluded.

***P < 0.001, **P < 0.01, *P < 0.05.
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uli were required to achieve the same P-value. At 60%

accuracy, 175 attended stimuli were required, whereas at

30% accuracy a P-value of less than 0.05 was unattainable

with 600 attended stimuli. In principle, because chance

performance was 12.5%, any accuracy above this thresh-

old should be detectible with an arbitrarily large number

of stimuli. However, factors such as participant fatigue

and changes in electrode placement and impedance place

an upper limit on the number of stimuli that can be

delivered.

Discussion

Overall, the battery was largely successful and has the

potential to be used for directly assessing executive func-

tion in DOC patients. At the group level, both the WM

and AR tasks generated a significant P300b to correct

word stimuli, demonstrating that overall performance

across participants was significantly above chance. The

single-participant level results were the most promising. A

significant P300b was found in 11/14 participants in the

WM task and 13/14 participants in the AR task. When

eight item memory sets were removed from analysis,

P300b responses from all 14 participants were significant

in the WM task. The adjusted battery was therefore able

to detect correct performance in tasks requiring cognitive

processes in 27/28 cases using the P300b ERP.

In the AT task, a significant P300b response was found

in all participants analyzed, demonstrating that the P300b

has the potential to be used as a command following par-

adigm for detecting residual awareness in DOC patients

(Dias et al. 2007), and replicating previous studies that

successfully utilized the auditory P300b to operate a BCI

system (Klobassa et al. 2009; K€ubler et al. 2009).

This approach could be used as a complementary means

of detecting volition in addition to motor imagery para-

digms developed previously (Chennu et al. 2013). In stan-

dard behavioral DOC assessment batteries, a variety of

motor output channels are used to examine command fol-

lowing to rule out the possibility that damage to specific

channels obscures the patient’s ability to follow instructions

(Kalmar and Giacino 2005). An analogous approach should

be taken when using active paradigms that employ voli-

tional modulations in neural activity. Damage to the motor

system might prevent the patient from performing motor

imagery. Likewise, damage to top down attention systems

could prevent the patient from attending to target stimuli.

By utilizing several command following paradigms to target

a broad set of neural systems, a larger proportion of

patients can be adequately assessed.

The second hypothesis of the study was that the battery

would be able to predict individual differences in perfor-

mance using the P300b response and results here were

somewhat mixed. In the AR task, ceiling performance

precluded meaningful variation in performance to predict.

That is, the task can detect whether an individual is able

to reason, but at these difficulty levels, cannot differenti-

ate between high and low reasoning abilities in controls.

In the WM task, there was a significant relationship

between ERP magnitude and accuracy. This result was

largely driven by the variance in the eight item memory

sets, however, and ceiling performance in four item and

six item memory sets again reduced individual differ-

ences. Within the eight item memory set, there was a rea-

sonably high correlation, suggesting that more difficult

tasks that increase variability should result in higher pre-

dictive accuracy, though further research is required in

order to better confirm this hypothesis.

A

B

C

D

Figure 4. (A) Relationship between

accuracy within memory set sizes and

normalized ERP magnitude. Each data

point represents the overall accuracy of a

single participant in a single WM set size

condition. (B) Relationship between

accuracy within four item memory sets and

normalized ERP magnitude. (C)

Relationship between accuracy within six

item memory sets and normalized ERP

magnitude. (D) Relationship between

accuracy within eight item memory sets

and normalized ERP magnitude. Each point

represents data from one participant. Red

line represents line of best fit.
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In general, the ability to detect core cognitive functions

is much more important than characterizing normative

performance in patients, at least at the outset. As DOC

patients are presumed to have at most minimal levels of

consciousness, demonstration of higher cognitive func-

tions would profoundly challenge a patient’s diagnosis.

Near ceiling performance is ideal for attaining this result

in a timely and robust manner, as demonstrated by the

Monte Carlo simulation. In the AR task as well as the

smaller WM set sizes, this difference was significant for

almost all participants.

However, once the presence of these functions is estab-

lished, providing a more fine-grained analysis of the

patient’s particular capacities is instrumental in determin-

ing the suitable amount and complexity of information to

present, allowing an appropriate level of patient auton-

omy, and facilitating comparisons across patients. Unlike

detection of above-chance performance, significant diver-

gence in participant performance is necessary to assess

individual differences.

Unfortunately, the particular conditions that maximize

the likelihood of optimal detection versus assessment are in

tension in the current paradigm. High performance is

required for detection, whereas variability in performance

across conditions is necessary for assessment. In order to

accommodate both of these motivations, a modified para-

digm is recommended for future exploration. Rather than

using a randomly presented, predefined number of trials at

each difficulty level, working memory and reasoning prob-

lems should be presented in a sequence of increasing diffi-

culty. Furthermore, the presentation of problems should be

controlled dynamically in concert with real-time statistical

analysis of ERPs. At the beginning of the neuropsychologi-

cal battery, problems at the lowest level of difficulty should

be presented first while ERPs to correct versus incorrect

word stimuli are compared online as data is collected. Once

the statistical difference between conditions reaches a pre-

defined threshold, the patient can proceed to a higher level

of difficulty, with more challenging problems presented.

Likewise, the statistical power for determining a lack of

Figure 5. Mean CMPT P-value for all

participants as a function of number of

targets. Delivery of 25 targets (one target

per eight stimuli, 500 msec per stimulus,

200 total stimuli) takes approximately

1 min and 40 sec. Error bars represent

standard error. Red dotted line represents

P = 0.05.
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difference can be calculated in real-time and given a similar

threshold for determining that the patient cannot perform

at that level. Similar to other dynamic neuropsychological

tests, the last difficulty level at which a patient can perform

satisfactorily can be taken as their capacity.

This approach has several advantages. Normalizing

ERPs is not required for estimating performance, elimi-

nating the need to establish baseline ERP responses dur-

ing each testing session. Likewise, because difficulty is

increased as soon as significance is reached, extraneous

time need not be spent establishing performance at lower

levels. Lastly, this procedure would better accommodate

individual differences in ERP discernibility. As shown in

Fig. 3, participants varied in performance and by exten-

sion the number of trials they required for a significant

result. Using a set number of trials therefore expends

unnecessary time with some participants, while failing to

detect a valid difference in others. Likewise, as demon-

strated in the Monte Carlo simulation, a patient perform-

ing at 70–90%, though still acceptable, may require

addition trials to reach significance. Given the variability

in EEG activity and patient characteristics, a testing para-

digm that adapts to the patient should be adopted, both

in the present battery as well as future active neuroimag-

ing assessment paradigms.

This study developed and evaluated a battery of neuro-

psychological tests that can be administered to behavior-

ally unresponsive patients using the P300b ERP

component. In the majority of participants (93%), the

ability to perform tasks requiring cognitive functions was

detected without the need to rely on motor output. The

magnitude of the P300b component was related to indi-

vidual differences in performance, but only with sufficient

variability between participants. Using Monte Carlo simu-

lations, it was demonstrated that the battery could detect

significant performance with a mean time of 5 min, with

the potential to be shortened with better optimization. As

communication with DOC patients using BCIs becomes

widespread, it will become increasingly necessary to assess

residual cognitive function for both ethical and scientific

purposes. As part of a larger battery of neuropsychological

tests, the approach developed here has the potential to

provide a standardized assessment tool for clinicians and

scientists.
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Appendix:

For the following ERP analyses, a cluster mass permuta-

tion test (CMPT) was used, adapted from Cruse et al.

(2012). The general motivation behind this procedure is

the recognition that EEG recordings generate a large

number of time samples within each ERP, with this num-

ber multiplied by the number of electrodes. It would
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require a substantial number of comparisons to compare

each time-electrode sample between the two conditions,

each increasing the probability of type 1 errors. Due to

the need to correct for multiple comparisons, the sensitiv-

ity of the test is severely diminished. Instead, the cluster

mass approach provides a test statistic that is based on

clustering adjacent spatial-temporal samples. This

approach was first developed for fMRI (Bullmore et al.

1999) and has since been adapted for analysis of

MEG and EEG data (Maris and Oostenveld 2007). In

order to generate the test statistic, the following proce-

dure is used:

1 For every time sample in a predefined window at every

electrode, compare the EEG signal between the two

conditions.

For each participant, there will be n trials from condi-

tion one and m trials from condition two. Each trial is a

matrix of time 9 electrode EEG voltage samples. There-

fore, for each time-electrode point, there will be n sam-

ples from condition one and m samples from condition

two. Perform an independent samples t-test for each

time-electrode point in the matrix between the two con-

ditions. A temporal analysis window of 300 to 800 msec

post stimulus onset was used following based on previous

P300b research (Guo et al. 2010).

2 Select all time-electrode points whose P-value is lower

than a predefined threshold. In this study, P < 0.05

was used, following conventional practice (Maris and

Oostenveld 2007).

3 Cluster significant points that are both spatially and

temporally adjacent. Points must be temporally adja-

cent by immediately following one another and spa-

tially adjacent by virtue of being recorded from

neighboring electrodes

4 For each cluster, sum all t-values of significant time-

electrode points.

5 Select the cluster with largest summed t-values. This

sum forms the test statistic.

From this analysis, a single value is generated, referred

to subsequently as the cluster mass value (CMV). In order

to perform statistical analyses on the differences between

conditions, a nonparametric permutation approach is

taken. For comparisons between conditions at the single-

participant level, the following procedure is used:

1 Collect all trials of the two experimental conditions in

a single set. Each trial includes the time-varying voltage

recorded at all electrodes.

2 Randomly draw as many trials from this combined

dataset as there are trials in condition one. Place those

trials into subset one. Place the remaining trials in sub-

set two. This results in a random partition.

3 Calculate the CMV on this random partition.

4 Repeat steps 2 and 3 10,000 times. This large number

of permutations allows a more precise characterization

of the probability distribution and dilutes the effects of

statistical anomalies.

5 Place the test statistic that was actually observed into

the histogram created in step 4.

6 Calculate the proportion of random partitions that

resulted in a larger CMV than the observed one to

derive a P-value.

A similar approach is used for CMPT group-level

analysis. In order to generate the test statistic, the follow-

ing procedure is used:

1 For each participant, an average ERP for each condi-

tion is calculated. Each participant is given a single

matrix of time 9 electrode values for each condition.

Time windows were restricted to 300–800 msec post

stimulus onset similar to single-participant level

analysis.

2 Each condition consists of a set of time 9 electrode

matrices, one for each participant. Conduct a paired-

samples t-test at each time-electrode point to determine

points that differ significantly between the two condi-

tions.

3 Cluster significant points (P < 0.05) that are both spa-

tially and temporally adjacent. Points must be tempo-

rally adjacent by preceding or following one another

and spatially adjacent by virtue of being recorded from

neighboring electrodes

4 For each cluster, sum all t-values.

5 Take the largest of the cluster-level statistics.

From this analysis, a CMV is generated. In order to

perform statistical analyses on the differences between

conditions, a nonparametric permutation approach is

used, albeit differing slightly from the previous method:

1 Within individual participants, permute the average

ERPs in each condition. For example, within partici-

pant one, the value of the average ERP from condition

one is reassigned to condition two, and vice versa. The

participants for which this exchange takes place are

selected randomly

2 Calculate the CMV on this permuted data set.

3 Repeat steps 1 and 2 10,000 times. This number of per-

mutations allows a more precise characterization of the

probability distribution and dilutes the effects of statis-

tical anomalies.

4 Place the test statistic that was actually observed into

the histogram created in step 3.

5 Calculate the proportion of random partitions that

resulted in a larger CMV than the observed one to

derive a P-value.

In both group level and single-participant level CMPTs,

a P-value less than a predefined alpha level (P < 0.05 in
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the current study) resulted in a rejection of the null

hypothesis. As mentioned above, this test is useful because

a single statistical test is conducted for each comparison

between conditions, controlling for the multiple compari-

sons problem. In contrast to parametric approaches, this

approach does not make assumptions about the distribu-

tion of the test statistic. Importantly, CMPT allows spatio-

temporal localization of significant changes in

electrophysiological activity in a data-driven manner.
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